Nuprl Lemma : i-member-witness

I:Interval. ∀r:ℝ.  ((r ∈ I)  (∃n:ℕ+(r ∈ i-approx(I;n))))


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q prop: uall: [x:A]. B[x]
Lemmas referenced :  i-member-iff i-member_wf real_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis isectElimination

Latex:
\mforall{}I:Interval.  \mforall{}r:\mBbbR{}.    ((r  \mmember{}  I)  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  (r  \mmember{}  i-approx(I;n))))



Date html generated: 2016_05_18-AM-08_40_58
Last ObjectModification: 2015_12_27-PM-11_50_54

Theory : reals


Home Index