Nuprl Lemma : is-msfun_wf

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[f:X ⟶ Y].  (is-msfun(X;d;Y;d';f) ∈ ℙ)


Proof




Definitions occuring in Statement :  is-msfun: is-msfun(X;d;Y;d';f) metric: metric(X) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-msfun: is-msfun(X;d;Y;d';f) prop: all: x:A. B[x] implies:  Q so_apply: x[s]
Lemmas referenced :  msep_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    (is-msfun(X;d;Y;d';f)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-06_25_31
Last ObjectModification: 2019_10_02-AM-10_00_57

Theory : reals


Home Index