Nuprl Lemma : is-msfun_wf
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[f:X ⟶ Y].  (is-msfun(X;d;Y;d';f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
is-msfun: is-msfun(X;d;Y;d';f)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-msfun: is-msfun(X;d;Y;d';f)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Lemmas referenced : 
msep_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    (is-msfun(X;d;Y;d';f)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_25_31
Last ObjectModification:
2019_10_02-AM-10_00_57
Theory : reals
Home
Index