Nuprl Lemma : metric-on-void
∀[X:Type]. Top ⊆r metric(X) supposing ¬X
Proof
Definitions occuring in Statement : 
metric: metric(X)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
metric: metric(X)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-top, 
istype-void, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
hypothesisEquality, 
lambdaFormation_alt, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
functionIsType, 
extract_by_obid, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectElimination, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  Top  \msubseteq{}r  metric(X)  supposing  \mneg{}X
Date html generated:
2019_10_29-AM-10_51_13
Last ObjectModification:
2019_10_02-AM-09_33_10
Theory : reals
Home
Index