Nuprl Lemma : metric-on-void

[X:Type]. Top ⊆metric(X) supposing ¬X


Proof




Definitions occuring in Statement :  metric: metric(X) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B metric: metric(X) not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B all: x:A. B[x]
Lemmas referenced :  istype-top istype-void istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt dependent_set_memberEquality_alt functionExtensionality sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination hypothesisEquality lambdaFormation_alt because_Cache independent_pairFormation sqequalRule productIsType functionIsType extract_by_obid axiomEquality universeIsType isect_memberEquality_alt isectElimination isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  Top  \msubseteq{}r  metric(X)  supposing  \mneg{}X



Date html generated: 2019_10_29-AM-10_51_13
Last ObjectModification: 2019_10_02-AM-09_33_10

Theory : reals


Home Index