Nuprl Lemma : partition-refines_transitivity
∀I:Interval. ∀P,Q,R:partition(I).  (P refines Q ⇒ Q refines R ⇒ P refines R) supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-refines: P refines Q, 
partition: partition(I), 
icompact: icompact(I), 
interval: Interval, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
partition-refines: P refines Q, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
partition: partition(I), 
prop: ℙ
Lemmas referenced : 
frs-refines_transitivity, 
frs-refines_wf, 
partition_wf, 
icompact_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
independent_isectElimination
Latex:
\mforall{}I:Interval.  \mforall{}P,Q,R:partition(I).    (P  refines  Q  {}\mRightarrow{}  Q  refines  R  {}\mRightarrow{}  P  refines  R)  supposing  icompact(I)
Date html generated:
2016_05_18-AM-09_05_51
Last ObjectModification:
2015_12_27-PM-11_31_58
Theory : reals
Home
Index