Nuprl Lemma : rabs-rabs

[x:ℝ]. (||x|| |x|)


Proof




Definitions occuring in Statement :  rabs: |x| req: y real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q
Lemmas referenced :  rabs-of-nonneg zero-rleq-rabs req_witness rabs_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis hypothesisEquality independent_functionElimination

Latex:
\mforall{}[x:\mBbbR{}].  (||x||  =  |x|)



Date html generated: 2016_05_18-AM-07_17_36
Last ObjectModification: 2015_12_28-AM-00_44_26

Theory : reals


Home Index