Nuprl Lemma : rabs-rabs
∀[x:ℝ]. (||x|| = |x|)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
Lemmas referenced : 
rabs-of-nonneg, 
zero-rleq-rabs, 
req_witness, 
rabs_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination
Latex:
\mforall{}[x:\mBbbR{}].  (||x||  =  |x|)
Date html generated:
2016_05_18-AM-07_17_36
Last ObjectModification:
2015_12_28-AM-00_44_26
Theory : reals
Home
Index