Nuprl Lemma : real-vec-sep_inversion

n:ℕ. ∀x,y:ℝ^n.  (x ≠  y ≠ x)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q prop: uall: [x:A]. B[x]
Lemmas referenced :  real-vec-sep-symmetry real-vec-sep_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (x  \mneq{}  y  {}\mRightarrow{}  y  \mneq{}  x)



Date html generated: 2017_10_03-AM-10_59_26
Last ObjectModification: 2017_04_07-PM-02_24_27

Theory : reals


Home Index