Nuprl Lemma : rless-implies-rleq

x,y:ℝ.  ((x < y)  (∃m:ℕ+(x ≤ (y (r1/r(m))))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  rless-iff-rleq real_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}\msupplus{}.  (x  \mleq{}  (y  -  (r1/r(m))))))



Date html generated: 2016_05_18-AM-07_53_38
Last ObjectModification: 2015_12_28-AM-01_07_12

Theory : reals


Home Index