Nuprl Lemma : rless-iff-rleq

x,y:ℝ.  (x < ⇐⇒ ∃m:ℕ+(x ≤ (y (r1/r(m)))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_apply: x[s] itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rless: x < y sq_exists: x:{A| B[x]} rge: x ≥ y rsub: y
Lemmas referenced :  rless_wf exists_wf nat_plus_wf rleq_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf real_wf radd-preserves-rless rminus_wf rless_functionality radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_weakening small-reciprocal-real rleq_functionality_wrt_implies rleq_weakening_equal rsub_functionality_wrt_rleq rleq_weakening_rless rleq_weakening radd-preserves-rleq rless_transitivity1 uiff_transitivity rleq_functionality radd_functionality radd-rminus-assoc radd_comm radd-zero-both rmul_preserves_rless itermMultiply_wf int_term_value_mul_lemma rmul_wf rmul-rdiv-cancel2 rmul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule lambdaEquality natural_numberEquality setElimination rename because_Cache independent_isectElimination inrFormation dependent_functionElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addLevel levelHypothesis promote_hyp dependent_set_memberEquality equalityTransitivity equalitySymmetry multiplyEquality lemma_by_obid

Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}m:\mBbbN{}\msupplus{}.  (x  \mleq{}  (y  -  (r1/r(m)))))



Date html generated: 2017_10_03-AM-09_05_59
Last ObjectModification: 2017_07_28-AM-07_41_51

Theory : reals


Home Index