Step
*
1
2
1
1
1
1
of Lemma
rmul-rinv1
1. x : ℝ
2. a : {2...}
3. mu-ge(λn.4 <z |x n|;1) = a ∈ {1...}
4. 4 < |x a|
5. ∀[i:ℕ+a]. (¬4 < |x i|)
6. ∀m:ℕ+. ((a ≤ m)
⇒ (m ≤ (a * |x m|)))
7. a * a ∈ ℕ
8. reg-seq-inv(reg-seq-adjust(a;x)) ∈ {f:ℕ+ ⟶ ℤ| 4 * ((4 * a * a) + 1)-regular-seq(f)}
9. n : {a...}
10. ¬n < a
11. x n ≠ 0
⊢ |((((4 * n * n) ÷ x n) * (x n)) ÷ 2 * n) - 2 * n * 1| ≤ (canonical-bound(x) + 1)
BY
{ ((Using [`n',⌜|2 * n|⌝] (BLemma `mul_cancel_in_le`)⋅ THENA (Auto THEN RWO "absval_pos" 0 THEN Auto'))⋅
THEN (RWO "absval_mul<" 0 THENA Auto)
THEN (RWO "left_mul_subtract_distrib" 0 THENA Auto)
THEN (RWO "div_rem_sum2" 0 THENA Auto)) }
1
1. x : ℝ
2. a : {2...}
3. mu-ge(λn.4 <z |x n|;1) = a ∈ {1...}
4. 4 < |x a|
5. ∀[i:ℕ+a]. (¬4 < |x i|)
6. ∀m:ℕ+. ((a ≤ m)
⇒ (m ≤ (a * |x m|)))
7. a * a ∈ ℕ
8. reg-seq-inv(reg-seq-adjust(a;x)) ∈ {f:ℕ+ ⟶ ℤ| 4 * ((4 * a * a) + 1)-regular-seq(f)}
9. n : {a...}
10. ¬n < a
11. x n ≠ 0
⊢ |(((4 * n * n) ÷ x n) * (x n)) - ((4 * n * n) ÷ x n) * (x n) rem 2 * n - (2 * n) * 2 * n * 1| ≤ (|2 * n|
* (canonical-bound(x) + 1))
Latex:
Latex:
1. x : \mBbbR{}
2. a : \{2...\}
3. mu-ge(\mlambda{}n.4 <z |x n|;1) = a
4. 4 < |x a|
5. \mforall{}[i:\mBbbN{}\msupplus{}a]. (\mneg{}4 < |x i|)
6. \mforall{}m:\mBbbN{}\msupplus{}. ((a \mleq{} m) {}\mRightarrow{} (m \mleq{} (a * |x m|)))
7. a * a \mmember{} \mBbbN{}
8. reg-seq-inv(reg-seq-adjust(a;x)) \mmember{} \{f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| 4 * ((4 * a * a) + 1)-regular-seq(f)\}
9. n : \{a...\}
10. \mneg{}n < a
11. x n \mneq{} 0
\mvdash{} |((((4 * n * n) \mdiv{} x n) * (x n)) \mdiv{} 2 * n) - 2 * n * 1| \mleq{} (canonical-bound(x) + 1)
By
Latex:
((Using [`n',\mkleeneopen{}|2 * n|\mkleeneclose{}] (BLemma `mul\_cancel\_in\_le`)\mcdot{}
THENA (Auto THEN RWO "absval\_pos" 0 THEN Auto')
)\mcdot{}
THEN (RWO "absval\_mul<" 0 THENA Auto)
THEN (RWO "left\_mul\_subtract\_distrib" 0 THENA Auto)
THEN (RWO "div\_rem\_sum2" 0 THENA Auto))
Home
Index