Step
*
1
1
1
2
1
1
1
of Lemma
rpolynomial-locally-non-zero-1
1. n : ℕ
2. a : ℕn + 1 ⟶ ℝ
3. (((a 0) * r1) + Σ{(a i) * r0^i | 1≤i≤n}) < r0
4. r0 < (Σi≤n. a_i * r1^i)
5. u : {u:ℝ| u ∈ [r0, r1]}
⊢ (a 0) < r0
BY
{ TACTIC:Assert ⌜Σ{(a i) * r0^i | 1≤i≤n} = r0⌝⋅ }
1
.....assertion.....
1. n : ℕ
2. a : ℕn + 1 ⟶ ℝ
3. (((a 0) * r1) + Σ{(a i) * r0^i | 1≤i≤n}) < r0
4. r0 < (Σi≤n. a_i * r1^i)
5. u : {u:ℝ| u ∈ [r0, r1]}
⊢ Σ{(a i) * r0^i | 1≤i≤n} = r0
2
1. n : ℕ
2. a : ℕn + 1 ⟶ ℝ
3. (((a 0) * r1) + Σ{(a i) * r0^i | 1≤i≤n}) < r0
4. r0 < (Σi≤n. a_i * r1^i)
5. u : {u:ℝ| u ∈ [r0, r1]}
6. Σ{(a i) * r0^i | 1≤i≤n} = r0
⊢ (a 0) < r0
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbN{}n + 1 {}\mrightarrow{} \mBbbR{}
3. (((a 0) * r1) + \mSigma{}\{(a i) * r0\^{}i | 1\mleq{}i\mleq{}n\}) < r0
4. r0 < (\mSigma{}i\mleq{}n. a\_i * r1\^{}i)
5. u : \{u:\mBbbR{}| u \mmember{} [r0, r1]\}
\mvdash{} (a 0) < r0
By
Latex:
TACTIC:Assert \mkleeneopen{}\mSigma{}\{(a i) * r0\^{}i | 1\mleq{}i\mleq{}n\} = r0\mkleeneclose{}\mcdot{}
Home
Index