Nuprl Lemma : rpolynomial-locally-non-zero-1
∀n:ℕ. ∀a:ℕn + 1 ⟶ ℝ.
  (((Σi≤n. a_i * r0^i) < r0) 
⇒ (r0 < (Σi≤n. a_i * r1^i)) 
⇒ locally-non-constant(λx.(Σi≤n. a_i * x^i);r0;r1;r0))
Proof
Definitions occuring in Statement : 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
rpolynomial: (Σi≤n. a_i * x^i)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
rfun: I ⟶ℝ
, 
r-ap: f(x)
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
poly-nth-deriv: poly-nth-deriv(n;a)
, 
rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x)
, 
req_int_terms: t1 ≡ t2
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
less_than': less_than'(a;b)
, 
rpolynomial: (Σi≤n. a_i * x^i)
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
rge: x ≥ y
, 
primrec: primrec(n;b;c)
, 
fact: (n)!
, 
rneq: x ≠ y
, 
rdiv: (x/y)
, 
subtract: n - m
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermMultiply: left "*" right
, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const"
, 
pi1: fst(t)
, 
rtermDivide: num "/" denom
, 
rtermVar: rtermVar(var)
, 
pi2: snd(t)
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
rpolynomial_wf, 
int_seg_wf, 
real_wf, 
istype-nat, 
i-member_wf, 
rccint_wf, 
locally-non-constant-deriv-seq-test, 
member_rccint_lemma, 
istype-void, 
rfun_wf, 
finite-deriv-seq_wf, 
subtype_rel_self, 
rleq_wf, 
req_wf, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformand_wf, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
istype-le, 
istype-less_than, 
rsub_wf, 
rsum_wf, 
rabs_wf, 
rpoly-nth-deriv_wf, 
int_seg_properties, 
polynomial-deriv-seq, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
bool_subtype_base, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
primrec0_lemma, 
req-iff-rsub-is-0, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
itermSubtract_wf, 
intformeq_wf, 
decidable__equal_int, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_weakening_equal, 
rleq_weakening_rless, 
rnexp_zero_lemma, 
sq_stable__less_than, 
radd_wf, 
istype-false, 
int_seg_subtype_nat, 
rnexp_wf, 
rmul_wf, 
rless_functionality, 
rsum-split-first, 
req_weakening, 
rsum_functionality, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
rnexp0, 
rmul-zero, 
req_functionality, 
rmul_functionality, 
rsum-zero, 
itermMultiply_wf, 
radd_functionality, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
exp_wf2, 
rnexp-int, 
rmul-one, 
squash_wf, 
true_wf, 
exp-one, 
iff_weakening_equal, 
rleq_weakening, 
rless_transitivity1, 
subtract_wf, 
primrec-wf2, 
rless_irreflexivity, 
rless_transitivity2, 
equal-wf-base, 
rsum-single, 
subtract-add-cancel, 
rsum-split-last, 
zero-rleq-rabs, 
rsum_nonneg, 
rless_functionality_wrt_implies, 
radd_functionality_wrt_rleq, 
poly-nth-deriv_wf, 
rabs_functionality, 
fact_wf, 
int-rdiv_wf, 
poly-nth-deriv-req, 
rless-int, 
fact0_redex_lemma, 
rdiv_wf, 
int-rdiv-req, 
rinv_wf2, 
rmul_preserves_req, 
req_transitivity, 
rinv1, 
rabs-rmul, 
int_term_value_minus_lemma, 
itermMinus_wf, 
istype-top, 
absval_unfold, 
absval_wf, 
rabs-int, 
rmul-is-positive, 
radd-positive-implies, 
subtype_rel_function, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-is-int-iff, 
eq_int_wf, 
assert_of_eq_int, 
ifthenelse_wf, 
neg_assert_of_eq_int, 
nequal_wf, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermVar_wf, 
rtermConstant_wf, 
rsum_linearity2, 
le-add-cancel2, 
nat_plus_inc_int_nzero, 
minus-minus, 
req_inversion, 
rpoly-nth-deriv-linear, 
lelt_wf, 
rpoly-nth-deriv_functionality, 
btrue_neq_bfalse, 
assert_elim, 
bnot_wf, 
bfalse_wf, 
btrue_wf, 
eq_int_eq_true, 
istype-universe, 
equal_wf, 
absval_pos, 
rmul_assoc, 
rless-cases, 
rmul_preserves_rless, 
rmul-rinv, 
rsum-triangle-inequality2, 
rsub_functionality, 
radd-preserves-rless, 
rless-implies-rless, 
rabs-of-nonneg, 
rleq_transitivity, 
sq_stable__rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
functionIsType, 
addEquality, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality_alt, 
setIsType, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
dependent_pairFormation_alt, 
productIsType, 
productElimination, 
applyEquality, 
functionEquality, 
setEquality, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
imageElimination, 
equalityIsType1, 
cumulativity, 
instantiate, 
promote_hyp, 
intEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityIsType4, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
imageMemberEquality, 
universeEquality, 
inrFormation_alt, 
applyLambdaEquality, 
isectIsTypeImplies, 
axiomSqEquality, 
isect_memberFormation_alt, 
lessCases, 
minusEquality, 
inlFormation_alt, 
multiplyEquality, 
equalityIstype, 
sqequalBase, 
hyp_replacement, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.
    (((\mSigma{}i\mleq{}n.  a\_i  *  r0\^{}i)  <  r0)
    {}\mRightarrow{}  (r0  <  (\mSigma{}i\mleq{}n.  a\_i  *  r1\^{}i))
    {}\mRightarrow{}  locally-non-constant(\mlambda{}x.(\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i);r0;r1;r0))
Date html generated:
2019_10_30-AM-09_12_10
Last ObjectModification:
2019_04_03-AM-00_23_54
Theory : reals
Home
Index