Nuprl Lemma : rpolynomial-locally-non-zero-1

n:ℕ. ∀a:ℕ1 ⟶ ℝ.
  (((Σi≤n. a_i r0^i) < r0)  (r0 < i≤n. a_i r1^i))  locally-non-constant(λx.(Σi≤n. a_i x^i);r0;r1;r0))


Proof




Definitions occuring in Statement :  locally-non-constant: locally-non-constant(f;a;b;c) rpolynomial: i≤n. a_i x^i) rless: x < y int-to-real: r(n) real: int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: nat: rfun: I ⟶ℝ r-ap: f(x) top: Top exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B so_lambda: λ2y.t[x; y] label: ...$L... t so_apply: x[s1;s2] subtype_rel: A ⊆B rless: x < y sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False so_lambda: λ2x.t[x] i-member: r ∈ I rccint: [l, u] cand: c∧ B so_apply: x[s] less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 poly-nth-deriv: poly-nth-deriv(n;a) rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x) req_int_terms: t1 ≡ t2 sq_stable: SqStable(P) real: less_than': less_than'(a;b) rpolynomial: i≤n. a_i x^i) pointwise-req: x[k] y[k] for k ∈ [n,m] true: True rev_uimplies: rev_uimplies(P;Q) pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rge: x ≥ y primrec: primrec(n;b;c) fact: (n)! rneq: x ≠ y rdiv: (x/y) subtract: m nequal: a ≠ b ∈  int_nzero: -o rat_term_to_real: rat_term_to_real(f;t) rtermMultiply: left "*" right rat_term_ind: rat_term_ind rtermConstant: "const" pi1: fst(t) rtermDivide: num "/" denom rtermVar: rtermVar(var) pi2: snd(t)
Lemmas referenced :  rless_wf int-to-real_wf rpolynomial_wf int_seg_wf real_wf istype-nat i-member_wf rccint_wf locally-non-constant-deriv-seq-test member_rccint_lemma istype-void rfun_wf finite-deriv-seq_wf subtype_rel_self rleq_wf req_wf nat_properties nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma istype-le istype-less_than rsub_wf rsum_wf rabs_wf rpoly-nth-deriv_wf int_seg_properties polynomial-deriv-seq less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_wf subtype_base_sq bool_cases_sqequal bool_subtype_base int_subtype_base le_wf set_subtype_base eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf primrec0_lemma req-iff-rsub-is-0 int_term_value_subtract_lemma int_formula_prop_eq_lemma itermSubtract_wf intformeq_wf decidable__equal_int real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_weakening_equal rleq_weakening_rless rnexp_zero_lemma sq_stable__less_than radd_wf istype-false int_seg_subtype_nat rnexp_wf rmul_wf rless_functionality rsum-split-first req_weakening rsum_functionality le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 rnexp0 rmul-zero req_functionality rmul_functionality rsum-zero itermMultiply_wf radd_functionality real_term_value_add_lemma real_term_value_mul_lemma exp_wf2 rnexp-int rmul-one squash_wf true_wf exp-one iff_weakening_equal rleq_weakening rless_transitivity1 subtract_wf primrec-wf2 rless_irreflexivity rless_transitivity2 equal-wf-base rsum-single subtract-add-cancel rsum-split-last zero-rleq-rabs rsum_nonneg rless_functionality_wrt_implies radd_functionality_wrt_rleq poly-nth-deriv_wf rabs_functionality fact_wf int-rdiv_wf poly-nth-deriv-req rless-int fact0_redex_lemma rdiv_wf int-rdiv-req rinv_wf2 rmul_preserves_req req_transitivity rinv1 rabs-rmul int_term_value_minus_lemma itermMinus_wf istype-top absval_unfold absval_wf rabs-int rmul-is-positive radd-positive-implies subtype_rel_function int_seg_subtype not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-is-int-iff eq_int_wf assert_of_eq_int ifthenelse_wf neg_assert_of_eq_int nequal_wf assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermVar_wf rtermConstant_wf rsum_linearity2 le-add-cancel2 nat_plus_inc_int_nzero minus-minus req_inversion rpoly-nth-deriv-linear lelt_wf rpoly-nth-deriv_functionality btrue_neq_bfalse assert_elim bnot_wf bfalse_wf btrue_wf eq_int_eq_true istype-universe equal_wf absval_pos rmul_assoc rless-cases rmul_preserves_rless rmul-rinv rsum-triangle-inequality2 rsub_functionality radd-preserves-rless rless-implies-rless rabs-of-nonneg rleq_transitivity sq_stable__rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality functionIsType addEquality setElimination rename sqequalRule lambdaEquality_alt setIsType because_Cache dependent_functionElimination independent_functionElimination isect_memberEquality_alt voidElimination dependent_pairFormation_alt productIsType productElimination applyEquality functionEquality setEquality inhabitedIsType dependent_set_memberEquality_alt independent_pairFormation unionElimination independent_isectElimination approximateComputation int_eqEquality imageElimination equalityIsType1 cumulativity instantiate promote_hyp intEquality baseClosed closedConclusion baseApply equalityIsType4 equalitySymmetry equalityTransitivity equalityElimination imageMemberEquality universeEquality inrFormation_alt applyLambdaEquality isectIsTypeImplies axiomSqEquality isect_memberFormation_alt lessCases minusEquality inlFormation_alt multiplyEquality equalityIstype sqequalBase hyp_replacement int_eqReduceTrueSq int_eqReduceFalseSq

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.
    (((\mSigma{}i\mleq{}n.  a\_i  *  r0\^{}i)  <  r0)
    {}\mRightarrow{}  (r0  <  (\mSigma{}i\mleq{}n.  a\_i  *  r1\^{}i))
    {}\mRightarrow{}  locally-non-constant(\mlambda{}x.(\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i);r0;r1;r0))



Date html generated: 2019_10_30-AM-09_12_10
Last ObjectModification: 2019_04_03-AM-00_23_54

Theory : reals


Home Index