Nuprl Lemma : rsum-triangle-inequality2

[n,m:ℤ]. ∀[x,y:{n..m 1-} ⟶ ℝ].  ((Σ{|y[i]| n≤i≤m} - Σ{|x[i]| n≤i≤m}) ≤ Σ{|x[i] y[i]| n≤i≤m})


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y rabs: |x| rsub: y radd: b real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} uiff: uiff(P;Q)
Lemmas referenced :  req_weakening radd_comm rabs_functionality rsum_functionality2 rleq_functionality rsum-triangle-inequality1 rleq_functionality_wrt_implies rleq_weakening_equal le_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt real_wf nat_plus_wf int_seg_wf radd_wf rabs_wf rsum_wf rsub_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality hypothesis addEquality natural_numberEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality intEquality voidElimination dependent_set_memberEquality independent_pairFormation unionElimination independent_isectElimination dependent_pairFormation int_eqEquality voidEquality computeAll lambdaFormation

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    ((\mSigma{}\{|y[i]|  |  n\mleq{}i\mleq{}m\}  -  \mSigma{}\{|x[i]|  |  n\mleq{}i\mleq{}m\})  \mleq{}  \mSigma{}\{|x[i]  +  y[i]|  |  n\mleq{}i\mleq{}m\})



Date html generated: 2016_05_18-AM-07_48_30
Last ObjectModification: 2016_01_17-AM-02_08_57

Theory : reals


Home Index