Nuprl Lemma : polynomial-deriv-seq

I:Interval. ∀n:ℕ. ∀a:ℕ1 ⟶ ℝ.  finite-deriv-seq(I;n;i,x.rpoly-nth-deriv(i;n;a;x))


Proof




Definitions occuring in Statement :  finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x) interval: Interval real: int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x) member: t ∈ T uall: [x:A]. B[x] nat: int_seg: {i..j-} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  guard: {T} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b decidable: Dec(P) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] rpoly-deriv: rpoly-deriv(n;a;x) nequal: a ≠ b ∈  poly-nth-deriv: poly-nth-deriv(n;a)
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf itermAdd_wf itermConstant_wf int_term_value_add_lemma int_term_value_constant_lemma derivative-rpolynomial subtract_wf decidable__le intformnot_wf intformle_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf poly-nth-deriv_wf int_seg_subtype_nat false_wf subtype_rel_dep_function int_seg_wf real_wf int_seg_subtype subtype_rel_self nat_wf interval_wf eq_int_wf assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int int_subtype_base decidable__equal_int primrec-unroll add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp instantiate cumulativity independent_functionElimination addEquality dependent_set_memberEquality applyEquality functionEquality

Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.    finite-deriv-seq(I;n;i,x.rpoly-nth-deriv(i;n;a;x))



Date html generated: 2017_10_03-PM-00_34_09
Last ObjectModification: 2017_07_28-AM-08_43_17

Theory : reals


Home Index