Nuprl Lemma : sq_stable__msep

[X:Type]. ∀d:metric(X). ∀x,y:X.  SqStable(x y)


Proof




Definitions occuring in Statement :  msep: y metric: metric(X) sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  msep: y uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Lemmas referenced :  sq_stable__rless int-to-real_wf mdist_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis hypothesisEquality inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}x,y:X.    SqStable(x  \#  y)



Date html generated: 2019_10_29-AM-11_01_04
Last ObjectModification: 2019_10_02-AM-09_42_18

Theory : reals


Home Index