Nuprl Lemma : is-standard_wf
∀[x:ℝ*]. (is-standard(x) ∈ ℙ)
Proof
Definitions occuring in Statement :
is-standard: is-standard(x)
,
real*: ℝ*
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
is-standard: is-standard(x)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
real_wf,
req*_wf,
rstar_wf,
real*_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}*]. (is-standard(x) \mmember{} \mBbbP{})
Date html generated:
2018_05_22-PM-09_28_39
Last ObjectModification:
2017_10_06-PM-03_37_24
Theory : reals_2
Home
Index