Nuprl Lemma : cat-final-isomorphic

[C:SmallCategory]. ∀fnl1,fnl2:cat-ob(C).  (Final(fnl1)  Final(fnl2)  cat-isomorphic(C;fnl1;fnl2))


Proof




Definitions occuring in Statement :  cat-final: Final(fnl) cat-isomorphic: cat-isomorphic(C;x;y) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q cat-final: Final(fnl) member: t ∈ T and: P ∧ Q cat-isomorphic: cat-isomorphic(C;x;y) exists: x:A. B[x] prop: cat-isomorphism: cat-isomorphism(C;x;y;f) cand: c∧ B cat-inverse: fg=1 guard: {T}
Lemmas referenced :  cat-isomorphism_wf cat-final_wf cat-ob_wf small-category_wf cat-inverse_wf cat-comp_wf cat-id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis addLevel sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination rename dependent_pairFormation introduction extract_by_obid levelHypothesis independent_pairFormation productEquality applyEquality

Latex:
\mforall{}[C:SmallCategory]
    \mforall{}fnl1,fnl2:cat-ob(C).    (Final(fnl1)  {}\mRightarrow{}  Final(fnl2)  {}\mRightarrow{}  cat-isomorphic(C;fnl1;fnl2))



Date html generated: 2017_01_10-AM-08_40_59
Last ObjectModification: 2017_01_09-AM-10_06_50

Theory : small!categories


Home Index