Nuprl Lemma : cat-final-isomorphic
∀[C:SmallCategory]. ∀fnl1,fnl2:cat-ob(C).  (Final(fnl1) 
⇒ Final(fnl2) 
⇒ cat-isomorphic(C;fnl1;fnl2))
Proof
Definitions occuring in Statement : 
cat-final: Final(fnl)
, 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cat-final: Final(fnl)
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
cand: A c∧ B
, 
cat-inverse: fg=1
, 
guard: {T}
Lemmas referenced : 
cat-isomorphism_wf, 
cat-final_wf, 
cat-ob_wf, 
small-category_wf, 
cat-inverse_wf, 
cat-comp_wf, 
cat-id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
rename, 
dependent_pairFormation, 
introduction, 
extract_by_obid, 
levelHypothesis, 
independent_pairFormation, 
productEquality, 
applyEquality
Latex:
\mforall{}[C:SmallCategory]
    \mforall{}fnl1,fnl2:cat-ob(C).    (Final(fnl1)  {}\mRightarrow{}  Final(fnl2)  {}\mRightarrow{}  cat-isomorphic(C;fnl1;fnl2))
Date html generated:
2017_01_10-AM-08_40_59
Last ObjectModification:
2017_01_09-AM-10_06_50
Theory : small!categories
Home
Index