Nuprl Lemma : presheaf-elements-sq
∀C:SmallCategory. ∀P:Top.
(el(P) ~ Cat(ob = A:cat-ob(C) × (ob(P) A);
arrow(Aa,Bb) = let A,a = Aa
in let B,b = Bb
in {f:cat-arrow(op-cat(C)) B A| (arrow(P) B A f b) = a ∈ (ob(P) A)} ;
id(Aa) = cat-id(C) (fst(Aa));
comp(Aa,Bb,Dd,f,g) = cat-comp(C) (fst(Aa)) (fst(Bb)) (fst(Dd)) f g))
Proof
Definitions occuring in Statement :
presheaf-elements: el(P)
,
op-cat: op-cat(C)
,
functor-arrow: arrow(F)
,
functor-ob: ob(F)
,
mk-cat: mk-cat,
cat-comp: cat-comp(C)
,
cat-id: cat-id(C)
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
top: Top
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
set: {x:A| B[x]}
,
apply: f a
,
spread: spread def,
product: x:A × B[x]
,
sqequal: s ~ t
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
small-category: SmallCategory
,
op-cat: op-cat(C)
,
presheaf-elements: el(P)
,
member: t ∈ T
,
top: Top
,
spreadn: spread4
Lemmas referenced :
cat_ob_pair_lemma,
cat_id_tuple_lemma,
cat_comp_tuple_lemma,
cat_arrow_triple_lemma,
top_wf,
small-category_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
sqequalHypSubstitution,
setElimination,
thin,
rename,
productElimination,
sqequalRule,
introduction,
extract_by_obid,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis
Latex:
\mforall{}C:SmallCategory. \mforall{}P:Top.
(el(P) \msim{} Cat(ob = A:cat-ob(C) \mtimes{} (ob(P) A);
arrow(Aa,Bb) = let A,a = Aa
in let B,b = Bb
in \{f:cat-arrow(op-cat(C)) B A| (arrow(P) B A f b) = a\} ;
id(Aa) = cat-id(C) (fst(Aa));
comp(Aa,Bb,Dd,f,g) = cat-comp(C) (fst(Aa)) (fst(Bb)) (fst(Dd)) f g))
Date html generated:
2017_10_05-AM-00_50_40
Last ObjectModification:
2017_10_03-AM-11_09_01
Theory : small!categories
Home
Index