Nuprl Lemma : tree-cat_wf

[X:Type]. (tree-cat(X) ∈ SmallCategory)


Proof




Definitions occuring in Statement :  tree-cat: tree-cat(X) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree-cat: tree-cat(X) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) so_apply: x[s1;s2;s3;s4;s5] uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B
Lemmas referenced :  mk-cat_wf unit_wf2 it_wf equal-unit
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality hypothesis because_Cache independent_isectElimination lambdaFormation independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  (tree-cat(X)  \mmember{}  SmallCategory)



Date html generated: 2017_01_19-PM-02_51_48
Last ObjectModification: 2017_01_13-AM-11_44_37

Theory : small!categories


Home Index