Nuprl Lemma : tree-cat_wf
∀[X:Type]. (tree-cat(X) ∈ SmallCategory)
Proof
Definitions occuring in Statement : 
tree-cat: tree-cat(X)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tree-cat: tree-cat(X)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
mk-cat_wf, 
unit_wf2, 
it_wf, 
equal-unit
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[X:Type].  (tree-cat(X)  \mmember{}  SmallCategory)
Date html generated:
2017_01_19-PM-02_51_48
Last ObjectModification:
2017_01_13-AM-11_44_37
Theory : small!categories
Home
Index