Nuprl Lemma : tree-cat_wf
∀[X:Type]. (tree-cat(X) ∈ SmallCategory)
Proof
Definitions occuring in Statement :
tree-cat: tree-cat(X)
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
tree-cat: tree-cat(X)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
,
so_apply: x[s1;s2;s3;s4;s5]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
Lemmas referenced :
mk-cat_wf,
unit_wf2,
it_wf,
equal-unit
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
lambdaEquality,
hypothesis,
because_Cache,
independent_isectElimination,
lambdaFormation,
independent_pairFormation,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[X:Type]. (tree-cat(X) \mmember{} SmallCategory)
Date html generated:
2017_01_19-PM-02_51_48
Last ObjectModification:
2017_01_13-AM-11_44_37
Theory : small!categories
Home
Index