Nuprl Lemma : void-initial-type

Initial(Void)


Proof




Definitions occuring in Statement :  type-cat: TypeCat cat-initial: Initial(i) void: Void
Definitions unfolded in proof :  type-cat: TypeCat cat-initial: Initial(i) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  void_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation introduction cut functionExtensionality voidElimination extract_by_obid hypothesis functionEquality voidEquality cumulativity hypothesisEquality sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache universeEquality

Latex:
Initial(Void)



Date html generated: 2017_01_09-AM-09_12_02
Last ObjectModification: 2017_01_08-PM-07_27_54

Theory : small!categories


Home Index