Nuprl Lemma : ml-gcd-list_wf
∀[L:ℤ List+]. (ml-gcd-list(L) ∈ ℤ)
Proof
Definitions occuring in Statement : 
ml-gcd-list: ml-gcd-list(L)
, 
listp: A List+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
ml-gcd-list-sq, 
gcd-list_wf, 
listp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[L:\mBbbZ{}  List\msupplus{}].  (ml-gcd-list(L)  \mmember{}  \mBbbZ{})
Date html generated:
2017_09_29-PM-05_51_37
Last ObjectModification:
2017_05_21-PM-04_27_21
Theory : ML
Home
Index