Nuprl Lemma : ml-gcd_wf
∀[x,y:ℤ].  (ml-gcd(x;y) ∈ ℤ)
Proof
Definitions occuring in Statement : 
ml-gcd: ml-gcd(a;b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
ml-gcd-sq, 
better-gcd_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbZ{}].    (ml-gcd(x;y)  \mmember{}  \mBbbZ{})
Date html generated:
2017_09_29-PM-05_51_31
Last ObjectModification:
2017_05_21-PM-04_16_57
Theory : ML
Home
Index