Nuprl Lemma : ml-gcd_wf

[x,y:ℤ].  (ml-gcd(x;y) ∈ ℤ)


Proof




Definitions occuring in Statement :  ml-gcd: ml-gcd(a;b) uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  ml-gcd-sq better-gcd_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbZ{}].    (ml-gcd(x;y)  \mmember{}  \mBbbZ{})



Date html generated: 2017_09_29-PM-05_51_31
Last ObjectModification: 2017_05_21-PM-04_16_57

Theory : ML


Home Index