Nuprl Lemma : add-positive
∀[x,y:ℤ].  (0 < x + y) supposing (0 < x and 0 < y)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
less_than_wf, 
member-less_than, 
equal-wf-base, 
int_subtype_base, 
add-monotonic
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
addEquality, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
inrFormation, 
baseClosed, 
applyEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[x,y:\mBbbZ{}].    (0  <  x  +  y)  supposing  (0  <  x  and  0  <  y)
Date html generated:
2019_06_20-AM-11_22_36
Last ObjectModification:
2018_08_17-AM-11_56_34
Theory : arithmetic
Home
Index