Nuprl Lemma : add-positive
∀[x,y:ℤ]. (0 < x + y) supposing (0 < x and 0 < y)
Proof
Definitions occuring in Statement :
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
guard: {T}
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Lemmas referenced :
less_than_wf,
member-less_than,
equal-wf-base,
int_subtype_base,
add-monotonic
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
hypothesisEquality,
sqequalRule,
isect_memberEquality,
addEquality,
independent_isectElimination,
because_Cache,
equalityTransitivity,
equalitySymmetry,
intEquality,
inrFormation,
baseClosed,
applyEquality,
dependent_functionElimination,
independent_functionElimination
Latex:
\mforall{}[x,y:\mBbbZ{}]. (0 < x + y) supposing (0 < x and 0 < y)
Date html generated:
2019_06_20-AM-11_22_36
Last ObjectModification:
2018_08_17-AM-11_56_34
Theory : arithmetic
Home
Index