Nuprl Lemma : not-gt

x,y:ℤ.  uiff(¬(y > x);x ≥ )


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) gt: i > j ge: i ≥  all: x:A. B[x] not: ¬A int:
Definitions unfolded in proof :  ge: i ≥  gt: i > j le: A ≤ B less_than: a < b all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False cand: c∧ B squash: T prop: uall: [x:A]. B[x]
Lemmas referenced :  member_wf and_wf squash_wf not_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation isect_memberFormation introduction cut thin sqequalHypSubstitution hypothesis independent_functionElimination hypothesisEquality imageMemberEquality baseClosed lemma_by_obid isectElimination voidElimination productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality intEquality imageElimination

Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(y  >  x);x  \mgeq{}  y  )



Date html generated: 2016_05_13-PM-03_29_47
Last ObjectModification: 2016_01_14-PM-06_41_44

Theory : arithmetic


Home Index