Nuprl Lemma : seq-comp_wf

[T:Type]. ∀[s:sequence(T)]. ∀[B:Type]. ∀[f:T ⟶ B].  (f s ∈ sequence(B))


Proof




Definitions occuring in Statement :  seq-comp: s sequence: sequence(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-comp: s sequence: sequence(T) nat:
Lemmas referenced :  int_seg_wf sequence_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality sqequalHypSubstitution productElimination thin dependent_pairEquality hypothesisEquality functionEquality extract_by_obid isectElimination natural_numberEquality setElimination rename hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[B:Type].  \mforall{}[f:T  {}\mrightarrow{}  B].    (f  o  s  \mmember{}  sequence(B))



Date html generated: 2018_07_25-PM-01_28_25
Last ObjectModification: 2018_06_11-PM-04_22_14

Theory : arithmetic


Home Index