Nuprl Lemma : seq-comp_wf
∀[T:Type]. ∀[s:sequence(T)]. ∀[B:Type]. ∀[f:T ⟶ B].  (f o s ∈ sequence(B))
Proof
Definitions occuring in Statement : 
seq-comp: f o s
, 
sequence: sequence(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
seq-comp: f o s
, 
sequence: sequence(T)
, 
nat: ℕ
Lemmas referenced : 
int_seg_wf, 
sequence_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairEquality, 
hypothesisEquality, 
functionEquality, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[B:Type].  \mforall{}[f:T  {}\mrightarrow{}  B].    (f  o  s  \mmember{}  sequence(B))
Date html generated:
2018_07_25-PM-01_28_25
Last ObjectModification:
2018_06_11-PM-04_22_14
Theory : arithmetic
Home
Index