Nuprl Lemma : sorted-seq_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[s:sequence(T)].  (sorted-seq(x,y.R[x;y];s) ∈ ℙ)


Proof




Definitions occuring in Statement :  sorted-seq: sorted-seq(x,y.R[x; y];s) sequence: sequence(T) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sorted-seq: sorted-seq(x,y.R[x; y];s) prop: all: x:A. B[x] subtype_rel: A ⊆B nat: implies:  Q int_seg: {i..j-} so_apply: x[s1;s2]
Lemmas referenced :  int_seg_wf seq-len_wf less_than_wf seq-item_wf sequence_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis applyEquality Error :lambdaEquality_alt,  setElimination rename Error :inhabitedIsType,  equalityTransitivity equalitySymmetry because_Cache axiomEquality Error :universeIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :functionIsType,  universeEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[s:sequence(T)].    (sorted-seq(x,y.R[x;y];s)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-AM-11_26_54
Last ObjectModification: 2019_01_15-AM-11_10_56

Theory : arithmetic


Home Index