Nuprl Lemma : sorted-seq_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[s:sequence(T)].  (sorted-seq(x,y.R[x;y];s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
sorted-seq: sorted-seq(x,y.R[x; y];s)
, 
sequence: sequence(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sorted-seq: sorted-seq(x,y.R[x; y];s)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
so_apply: x[s1;s2]
Lemmas referenced : 
int_seg_wf, 
seq-len_wf, 
less_than_wf, 
seq-item_wf, 
sequence_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
axiomEquality, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :functionIsType, 
universeEquality, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[s:sequence(T)].    (sorted-seq(x,y.R[x;y];s)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_26_54
Last ObjectModification:
2019_01_15-AM-11_10_56
Theory : arithmetic
Home
Index