Nuprl Lemma : stable__le
∀[i,j:ℤ].  Stable{i ≤ j}
Proof
Definitions occuring in Statement : 
stable: Stable{P}, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
stable: Stable{P}, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q
Lemmas referenced : 
stable__from_decidable, 
le_wf, 
decidable__le, 
le_witness_for_triv, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
Error :isect_memberEquality_alt, 
productElimination, 
independent_isectElimination, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType
Latex:
\mforall{}[i,j:\mBbbZ{}].    Stable\{i  \mleq{}  j\}
Date html generated:
2019_06_20-AM-11_26_28
Last ObjectModification:
2018_12_06-AM-10_48_30
Theory : arithmetic
Home
Index