Nuprl Lemma : zero_ann

[i:ℤ]. (0 (i 0) ∈ ℤ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B top: Top
Lemmas referenced :  mul-commutes zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality intEquality because_Cache

Latex:
\mforall{}[i:\mBbbZ{}].  (0  =  (i  *  0))



Date html generated: 2016_05_13-PM-03_41_20
Last ObjectModification: 2015_12_26-AM-09_39_42

Theory : arithmetic


Home Index