Nuprl Lemma : zero_ann
∀[i:ℤ]. (0 = (i * 0) ∈ ℤ)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
multiply: n * m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
top: Top
Lemmas referenced :
mul-commutes,
zero-mul
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
natural_numberEquality,
hypothesis,
applyEquality,
lambdaEquality,
isect_memberEquality,
voidElimination,
voidEquality,
intEquality,
because_Cache
Latex:
\mforall{}[i:\mBbbZ{}]. (0 = (i * 0))
Date html generated:
2016_05_13-PM-03_41_20
Last ObjectModification:
2015_12_26-AM-09_39_42
Theory : arithmetic
Home
Index