Nuprl Lemma : zero_ann
∀[i:ℤ]. (0 = (i * 0) ∈ ℤ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
mul-commutes, 
zero-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
because_Cache
Latex:
\mforall{}[i:\mBbbZ{}].  (0  =  (i  *  0))
Date html generated:
2016_05_13-PM-03_41_20
Last ObjectModification:
2015_12_26-AM-09_39_42
Theory : arithmetic
Home
Index