Nuprl Lemma : free-from-atom-pair-iff
∀[a:Atom1]. ∀[X:Type]. ∀[Y:𝕌']. ∀[x:X]. ∀[y:Y].  uiff(a#<x, y>:x:X × Y;a#x:X ∧ a#y:Y)
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
free-from-atom-pair-components, 
free-from-atom_wf, 
free-from-atom-pair, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
because_Cache, 
independent_pairEquality, 
freeFromAtomAxiom, 
cumulativity, 
instantiate, 
productEquality, 
dependent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
atomnEquality
Latex:
\mforall{}[a:Atom1].  \mforall{}[X:Type].  \mforall{}[Y:\mBbbU{}'].  \mforall{}[x:X].  \mforall{}[y:Y].    uiff(a\#<x,  y>:x:X  \mtimes{}  Y;a\#x:X  \mwedge{}  a\#y:Y)
Date html generated:
2016_05_13-PM-03_21_37
Last ObjectModification:
2015_12_26-AM-09_11_53
Theory : atom_1
Home
Index