Nuprl Lemma : free-from-atom-pair-iff

[a:Atom1]. ∀[X:Type]. ∀[Y:𝕌']. ∀[x:X]. ∀[y:Y].  uiff(a#<x, y>:x:X × Y;a#x:X ∧ a#y:Y)


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} prop:
Lemmas referenced :  free-from-atom-pair-components free-from-atom_wf free-from-atom-pair and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality independent_isectElimination hypothesis productElimination because_Cache independent_pairEquality freeFromAtomAxiom cumulativity instantiate productEquality dependent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality atomnEquality

Latex:
\mforall{}[a:Atom1].  \mforall{}[X:Type].  \mforall{}[Y:\mBbbU{}'].  \mforall{}[x:X].  \mforall{}[y:Y].    uiff(a\#<x,  y>:x:X  \mtimes{}  Y;a\#x:X  \mwedge{}  a\#y:Y)



Date html generated: 2016_05_13-PM-03_21_37
Last ObjectModification: 2015_12_26-AM-09_11_53

Theory : atom_1


Home Index