Nuprl Lemma : free-from-atom-pair-components

[a:Atom1]. ∀[X:Type]. ∀[Y:X ⟶ 𝕌']. ∀[x:X]. ∀[y:Y[x]].  {a#x:X ∧ a#y:Y[x]} supposing a#<x, y>:x:X × Y[x]


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n uimplies: supposing a uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T guard: {T} and: P ∧ Q prop: so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B
Lemmas referenced :  free-from-atom_wf equal_wf pi1_wf subtype_rel_self subtype_rel_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality freeFromAtomAxiom hypothesis instantiate extract_by_obid isectElimination productEquality cumulativity hypothesisEquality applyEquality functionExtensionality dependent_pairEquality functionEquality universeEquality atomnEquality freeFromAtomApplication freeFromAtomTriviality lambdaEquality lambdaFormation setElimination rename hyp_replacement equalitySymmetry applyLambdaEquality because_Cache freeFromAtomSet dependent_set_memberEquality

Latex:
\mforall{}[a:Atom1].  \mforall{}[X:Type].  \mforall{}[Y:X  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[x:X].  \mforall{}[y:Y[x]].    \{a\#x:X  \mwedge{}  a\#y:Y[x]\}  supposing  a\#<x,  y>:x:X  \mtimes{}\000C  Y[x]



Date html generated: 2017_04_14-AM-07_14_37
Last ObjectModification: 2017_02_27-PM-02_50_16

Theory : atom_1


Home Index