Nuprl Lemma : free-from-atom-pair-components
∀[a:Atom1]. ∀[X:Type]. ∀[Y:X ⟶ 𝕌']. ∀[x:X]. ∀[y:Y[x]].  {a#x:X ∧ a#y:Y[x]} supposing a#<x, y>:x:X × Y[x]
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
guard: {T}
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
free-from-atom_wf, 
equal_wf, 
pi1_wf, 
subtype_rel_self, 
subtype_rel_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
freeFromAtomAxiom, 
hypothesis, 
instantiate, 
extract_by_obid, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
dependent_pairEquality, 
functionEquality, 
universeEquality, 
atomnEquality, 
freeFromAtomApplication, 
freeFromAtomTriviality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
because_Cache, 
freeFromAtomSet, 
dependent_set_memberEquality
Latex:
\mforall{}[a:Atom1].  \mforall{}[X:Type].  \mforall{}[Y:X  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[x:X].  \mforall{}[y:Y[x]].    \{a\#x:X  \mwedge{}  a\#y:Y[x]\}  supposing  a\#<x,  y>:x:X  \mtimes{}\000C  Y[x]
Date html generated:
2017_04_14-AM-07_14_37
Last ObjectModification:
2017_02_27-PM-02_50_16
Theory : atom_1
Home
Index