Nuprl Lemma : dcdr-to-bool-equivalence
∀[P:ℙ]. ∀d:Dec(P). (↑[d]b ⇐⇒ P)
Proof
Definitions occuring in Statement : 
dcdr-to-bool: [d]b, 
assert: ↑b, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
dcdr-to-bool: [d]b, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
false: False, 
true: True, 
not: ¬A
Lemmas referenced : 
assert_wf, 
dcdr-to-bool_wf, 
assert_witness, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
introduction, 
independent_functionElimination, 
universeEquality, 
unionElimination, 
sqequalRule, 
voidElimination, 
natural_numberEquality
Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}d:Dec(P).  (\muparrow{}[d]\msubb{}  \mLeftarrow{}{}\mRightarrow{}  P)
Date html generated:
2016_05_13-PM-03_58_26
Last ObjectModification:
2015_12_26-AM-10_50_56
Theory : bool_1
Home
Index