Nuprl Lemma : dcdr-to-bool-equivalence

[P:ℙ]. ∀d:Dec(P). (↑[d]b ⇐⇒ P)


Proof




Definitions occuring in Statement :  dcdr-to-bool: [d]b assert: b decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q decidable: Dec(P) or: P ∨ Q dcdr-to-bool: [d]b assert: b ifthenelse: if then else fi  false: False true: True not: ¬A
Lemmas referenced :  assert_wf dcdr-to-bool_wf assert_witness decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis introduction independent_functionElimination universeEquality unionElimination sqequalRule voidElimination natural_numberEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}d:Dec(P).  (\muparrow{}[d]\msubb{}  \mLeftarrow{}{}\mRightarrow{}  P)



Date html generated: 2016_05_13-PM-03_58_26
Last ObjectModification: 2015_12_26-AM-10_50_56

Theory : bool_1


Home Index