Nuprl Lemma : dcdr-to-bool_wf
∀[P:ℙ]. ∀[d:Dec(P)].  ([d]b ∈ 𝔹)
Proof
Definitions occuring in Statement : 
dcdr-to-bool: [d]b
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
dcdr-to-bool: [d]b
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
not_wf, 
it_wf, 
unit_wf2, 
equal_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
unionEquality, 
cumulativity, 
extract_by_obid, 
isectElimination, 
lambdaFormation, 
unionElimination, 
inlEquality, 
inrEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[d:Dec(P)].    ([d]\msubb{}  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_32_14
Last ObjectModification:
2018_08_21-PM-01_52_55
Theory : bool_1
Home
Index