Nuprl Lemma : dcdr-to-bool_wf

[P:ℙ]. ∀[d:Dec(P)].  ([d]b ∈ 𝔹)


Proof




Definitions occuring in Statement :  dcdr-to-bool: [d]b bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  dcdr-to-bool: [d]b bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] member: t ∈ T or: P ∨ Q prop: all: x:A. B[x] implies:  Q
Lemmas referenced :  not_wf it_wf unit_wf2 equal_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin unionEquality cumulativity extract_by_obid isectElimination lambdaFormation unionElimination inlEquality inrEquality dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[d:Dec(P)].    ([d]\msubb{}  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-AM-11_32_14
Last ObjectModification: 2018_08_21-PM-01_52_55

Theory : bool_1


Home Index