Nuprl Lemma : eq_int_cases_test

[A:Type]. ∀x,y:A.  ∀[P:A ⟶ ℙ]. ∀i,j:ℤ.  ((P if (i =z j) then else fi  (P if (i =z j) then else fi ))


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop:
Lemmas referenced :  ifthenelse_wf eq_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation hypothesis applyEquality hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality Error :functionIsType,  Error :inhabitedIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[A:Type]
    \mforall{}x,y:A.
        \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}i,j:\mBbbZ{}.    ((P  if  (i  =\msubz{}  j)  then  x  else  y  fi  )  {}\mRightarrow{}  (P  if  (i  =\msubz{}  j)  then  x  else  y  fi  ))



Date html generated: 2019_06_20-AM-11_32_04
Last ObjectModification: 2018_09_26-AM-11_28_11

Theory : bool_1


Home Index