Nuprl Lemma : pair-blex_wf

[A,B:Type]. ∀[eq,Ra:A ⟶ A ⟶ 𝔹]. ∀[Rb:B ⟶ B ⟶ 𝔹].  (pair-blex(eq;Ra;Rb) ∈ (A × B) ⟶ (A × B) ⟶ 𝔹)


Proof




Definitions occuring in Statement :  pair-blex: pair-blex(eq;Ra;Rb) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pair-blex: pair-blex(eq;Ra;Rb) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bor_wf pi1_wf band_wf pi2_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis productEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[eq,Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbB{}].
    (pair-blex(eq;Ra;Rb)  \mmember{}  (A  \mtimes{}  B)  {}\mrightarrow{}  (A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2016_05_13-PM-03_58_18
Last ObjectModification: 2015_12_26-AM-10_51_02

Theory : bool_1


Home Index