Nuprl Lemma : pair-blex_wf
∀[A,B:Type]. ∀[eq,Ra:A ⟶ A ⟶ 𝔹]. ∀[Rb:B ⟶ B ⟶ 𝔹].  (pair-blex(eq;Ra;Rb) ∈ (A × B) ⟶ (A × B) ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
pair-blex: pair-blex(eq;Ra;Rb)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pair-blex: pair-blex(eq;Ra;Rb)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
bor_wf, 
pi1_wf, 
band_wf, 
pi2_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[eq,Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbB{}].
    (pair-blex(eq;Ra;Rb)  \mmember{}  (A  \mtimes{}  B)  {}\mrightarrow{}  (A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2016_05_13-PM-03_58_18
Last ObjectModification:
2015_12_26-AM-10_51_02
Theory : bool_1
Home
Index