Nuprl Lemma : rev_bimplies_wf
∀[p,q:𝔹].  (p 
⇐b q ∈ 𝔹)
Proof
Definitions occuring in Statement : 
rev_bimplies: p 
⇐b q
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a
, 
rev_bimplies: p 
⇐b q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
bimplies_wf, 
assert_wf, 
bool_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
sqequalSubstitution, 
isect_memberFormation, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}[p,q:\mBbbB{}].    (p  \mLeftarrow{}{}\msubb{}  q  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_31_16
Last ObjectModification:
2018_08_27-PM-02_58_52
Theory : bool_1
Home
Index