Nuprl Lemma : isatom2-bool-if-has-value
∀[t:Base]. isatom2(t) ∈ 𝔹 supposing (t)↓
Proof
Definitions occuring in Statement :
has-value: (a)↓
,
bfalse: ff
,
btrue: tt
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
isatom2: isatom2(z;a;b)
,
member: t ∈ T
,
base: Base
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
has-value: (a)↓
,
top: Top
,
prop: ℙ
Lemmas referenced :
base_wf,
bfalse_wf,
top_wf,
btrue_wf,
is-exception_wf,
has-value_wf_base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
isatom2Cases,
divergentSqle,
hypothesis,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
baseClosed,
hypothesisEquality,
sqequalRule,
isAtom2ReduceTrue,
equalityTransitivity,
equalitySymmetry,
sqequalAxiom,
isect_memberEquality,
because_Cache,
voidElimination,
voidEquality,
axiomEquality
Latex:
\mforall{}[t:Base]. isatom2(t) \mmember{} \mBbbB{} supposing (t)\mdownarrow{}
Date html generated:
2016_05_13-PM-03_22_10
Last ObjectModification:
2016_01_14-PM-06_47_09
Theory : call!by!value_1
Home
Index