Nuprl Lemma : isaxiom-implies-not-isint

[t:Base]. (¬↑isint(t)) supposing ((↑isaxiom(t)) and (t)↓)


Proof




Definitions occuring in Statement :  has-value: (a)↓ assert: b bfalse: ff btrue: tt uimplies: supposing a uall: [x:A]. B[x] isaxiom: if Ax then otherwise b isint: isint def not: ¬A base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False has-value: (a)↓ assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff prop: top: Top
Lemmas referenced :  base_wf is-exception_wf has-value_wf_base bfalse_wf top_wf btrue_wf assert_wf true_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin isintCases divergentSqle hypothesis because_Cache sqequalRule isintReduceTrue natural_numberEquality isaxiomCases sqequalHypSubstitution voidElimination isectElimination sqequalAxiom isect_memberEquality hypothesisEquality lemma_by_obid independent_functionElimination voidEquality baseClosed equalityTransitivity equalitySymmetry lambdaEquality dependent_functionElimination

Latex:
\mforall{}[t:Base].  (\mneg{}\muparrow{}isint(t))  supposing  ((\muparrow{}isaxiom(t))  and  (t)\mdownarrow{})



Date html generated: 2016_05_13-PM-03_27_17
Last ObjectModification: 2016_01_14-PM-06_43_44

Theory : call!by!value_1


Home Index