Nuprl Lemma : member-has-valueall

[a:Base]. Ax ∈ has-valueall(a) supposing has-valueall(a)


Proof




Definitions occuring in Statement :  has-valueall: has-valueall(a) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-valueall: has-valueall(a) has-value: (a)↓ prop:
Lemmas referenced :  has-valueall_wf_base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut axiomSqleEquality hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache

Latex:
\mforall{}[a:Base].  Ax  \mmember{}  has-valueall(a)  supposing  has-valueall(a)



Date html generated: 2016_05_13-PM-03_25_19
Last ObjectModification: 2015_12_26-AM-09_29_22

Theory : call!by!value_1


Home Index