Nuprl Lemma : try-is-exception
∀[t,n,B,m,x:Base].
  exception(m; x) ≤ t?n:v.B[v] 
  supposing ↓((n ∈ Atom2)
             ∧ (((m ∈ Atom2) ∧ (exception(m; x) ≤ t) ∧ (¬(n = m ∈ Atom2)))
               ∨ (∃u:Base. ((t ~ exception(n; u)) ∧ (exception(m; x) ≤ B[u])))))
             ∨ ((t)↓ ∧ (exception(m; x) ≤ n))
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
atom: Atom$n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
base: Base
, 
sqle: s ≤ t
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
false: False
, 
has-value: (a)↓
Lemmas referenced : 
has-value_wf_base, 
base_wf, 
exists_wf, 
not_wf, 
sqle_wf_base, 
equal-wf-base, 
or_wf, 
squash_wf, 
sq_stable__sqle, 
is-exception_wf
Rules used in proof : 
sqequalIntensionalEquality, 
lambdaEquality, 
because_Cache, 
atomnEquality, 
productEquality, 
imageMemberEquality, 
productElimination, 
unionElimination, 
imageElimination, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqleReflexivity, 
sqleRule, 
divergentSqle, 
atomn_eqReduceFalseSq, 
equalitySymmetry, 
equalityTransitivity, 
atomn_eqReduceTrueSq, 
tryReduceValue
Latex:
\mforall{}[t,n,B,m,x:Base].
    exception(m;  x)  \mleq{}  t?n:v.B[v] 
    supposing  \mdownarrow{}((n  \mmember{}  Atom2)
                          \mwedge{}  (((m  \mmember{}  Atom2)  \mwedge{}  (exception(m;  x)  \mleq{}  t)  \mwedge{}  (\mneg{}(n  =  m)))
                              \mvee{}  (\mexists{}u:Base.  ((t  \msim{}  exception(n;  u))  \mwedge{}  (exception(m;  x)  \mleq{}  B[u])))))
                          \mvee{}  ((t)\mdownarrow{}  \mwedge{}  (exception(m;  x)  \mleq{}  n))
Date html generated:
2019_06_20-AM-11_21_52
Last ObjectModification:
2018_10_15-PM-05_09_20
Theory : call!by!value_1
Home
Index