Nuprl Lemma : not-not-excluded-middle
∀P:ℙ. (¬¬(P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
not_over_or, 
not_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}P:\mBbbP{}.  (\mneg{}\mneg{}(P  \mvee{}  (\mneg{}P)))
Date html generated:
2016_05_13-PM-03_46_02
Last ObjectModification:
2015_12_26-AM-09_58_45
Theory : call!by!value_2
Home
Index