Nuprl Lemma : sq_stable__vdf-eq

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[L:(a:A × b:B × C[a;b]) List].
  SqStable(vdf-eq(A;f;L))


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) list: List sq_stable: SqStable(P) uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] sq_stable: SqStable(P) implies:  Q squash: T member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] prop:
Lemmas referenced :  vdf-eq-witness squash_wf vdf-eq_wf list_wf very-dep-fun_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution imageElimination introduction cut extract_by_obid isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality universeIsType independent_isectElimination hypothesis dependent_functionElimination productEquality functionIsType inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].
    SqStable(vdf-eq(A;f;L))



Date html generated: 2020_05_19-PM-09_40_46
Last ObjectModification: 2020_03_06-PM-01_24_30

Theory : co-recursion-2


Home Index