Nuprl Lemma : vdf-eq-witness

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[L:(a:A × b:B × C[a;b]) List].
  Ax ∈ vdf-eq(A;f;L) supposing vdf-eq(A;f;L)


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] prop: nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B vdf-eq: vdf-eq(A;f;L) select: L[n] nil: [] it: dep-all: dep-all(n;i.P[i]) true: True decidable: Dec(P) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B let: let
Lemmas referenced :  vdf-eq_wf list_wf very-dep-fun_wf istype-universe nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than first0 subtype_rel_list top_wf length_of_nil_lemma stuck-spread istype-base firstn_wf istype-le length_wf subtract-1-ge-0 istype-nat length_wf_nat decidable__le intformnot_wf int_formula_prop_not_lemma firstn_all subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__lt subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination thin hypothesisEquality lambdaEquality_alt applyEquality dependent_functionElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType productEquality functionIsType instantiate universeEquality lambdaFormation_alt setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination functionIsTypeImplies productIsType because_Cache baseClosed closedConclusion unionElimination dependent_set_memberEquality_alt productElimination dependentIntersectionElimination dependentIntersection_memberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].
    Ax  \mmember{}  vdf-eq(A;f;L)  supposing  vdf-eq(A;f;L)



Date html generated: 2020_05_19-PM-09_40_44
Last ObjectModification: 2020_03_06-PM-03_21_08

Theory : co-recursion-2


Home Index