Nuprl Lemma : W-to-not-not-sig2

A:Type. ∀B:A ⟶ Type.  (W(A;a.B[a])  (∀R:Type. (((a:A × (B[a]  R))  R)  R)))


Proof




Definitions occuring in Statement :  W: W(A;a.B[a]) so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B
Lemmas referenced :  W_wf W-induction all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality rename instantiate productEquality independent_functionElimination dependent_functionElimination introduction dependent_pairEquality

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    (W(A;a.B[a])  {}\mRightarrow{}  (\mforall{}R:Type.  (((a:A  \mtimes{}  (B[a]  {}\mRightarrow{}  R))  {}\mRightarrow{}  R)  {}\mRightarrow{}  R)))



Date html generated: 2016_05_14-AM-06_17_39
Last ObjectModification: 2015_12_26-PM-00_03_39

Theory : co-recursion


Home Index