Nuprl Lemma : W_corec_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[F:Type ⟶ Type].  (W_corec(A;a.B[a];T.F[T]) ∈ Type)


Proof




Definitions occuring in Statement :  W_corec: W_corec(A;a.B[a];T.F[T]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T W_corec: W_corec(A;a.B[a];T.F[T]) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  W_wf W_iterate_functor_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isectEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[F:Type  {}\mrightarrow{}  Type].    (W\_corec(A;a.B[a];T.F[T])  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_16_32
Last ObjectModification: 2015_12_26-PM-00_04_24

Theory : co-recursion


Home Index