Nuprl Lemma : W_corec_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[F:Type ⟶ Type].  (W_corec(A;a.B[a];T.F[T]) ∈ Type)
Proof
Definitions occuring in Statement : 
W_corec: W_corec(A;a.B[a];T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
W_corec: W_corec(A;a.B[a];T.F[T])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
W_wf, 
W_iterate_functor_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[F:Type  {}\mrightarrow{}  Type].    (W\_corec(A;a.B[a];T.F[T])  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_16_32
Last ObjectModification:
2015_12_26-PM-00_04_24
Theory : co-recursion
Home
Index