Nuprl Lemma : Wsucc_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])].  (Wsucc(A;a.B[a];w) ∈ ℙ)
Proof
Definitions occuring in Statement : 
Wsucc: Wsucc(A;a.B[a];w)
, 
W: W(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Wsucc: Wsucc(A;a.B[a];w)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ext-eq_wf, 
W-ext, 
pi1_wf, 
W_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
lambdaEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
hypothesis, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].    (Wsucc(A;a.B[a];w)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_16_43
Last ObjectModification:
2015_12_26-PM-00_04_14
Theory : co-recursion
Home
Index