Nuprl Lemma : bar-base-subtype
∀[T:Type]. (bar-base(T) ⊆r (T + bar-base(T)))
Proof
Definitions occuring in Statement :
bar-base: bar-base(T)
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bar-base: bar-base(T)
,
guard: {T}
,
subtype_rel: A ⊆r B
Lemmas referenced :
corec-ext,
continuous-monotone-union,
continuous-monotone-constant,
continuous-monotone-id,
subtype_rel_weakening,
bar-base_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality,
unionEquality,
hypothesisEquality,
universeEquality,
independent_isectElimination,
dependent_functionElimination,
independent_functionElimination,
hypothesis,
axiomEquality
Latex:
\mforall{}[T:Type]. (bar-base(T) \msubseteq{}r (T + bar-base(T)))
Date html generated:
2016_05_14-AM-06_19_37
Last ObjectModification:
2015_12_26-PM-00_01_55
Theory : co-recursion
Home
Index