Nuprl Lemma : bar-base_subtype
∀[T:Type]. ((T + bar-base(T)) ⊆r bar-base(T))
Proof
Definitions occuring in Statement : 
bar-base: bar-base(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bar-base: bar-base(T)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
corec-ext, 
continuous-monotone-union, 
continuous-monotone-constant, 
continuous-monotone-id, 
ext-eq_inversion, 
bar-base_wf, 
subtype_rel_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
unionEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
axiomEquality
Latex:
\mforall{}[T:Type].  ((T  +  bar-base(T))  \msubseteq{}r  bar-base(T))
Date html generated:
2016_05_14-AM-06_19_40
Last ObjectModification:
2015_12_26-PM-00_02_20
Theory : co-recursion
Home
Index