Nuprl Lemma : bar-base_subtype

[T:Type]. ((T bar-base(T)) ⊆bar-base(T))


Proof




Definitions occuring in Statement :  bar-base: bar-base(T) subtype_rel: A ⊆B uall: [x:A]. B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q bar-base: bar-base(T) guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  corec-ext continuous-monotone-union continuous-monotone-constant continuous-monotone-id ext-eq_inversion bar-base_wf subtype_rel_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality unionEquality hypothesisEquality universeEquality independent_isectElimination dependent_functionElimination independent_functionElimination hypothesis axiomEquality

Latex:
\mforall{}[T:Type].  ((T  +  bar-base(T))  \msubseteq{}r  bar-base(T))



Date html generated: 2016_05_14-AM-06_19_40
Last ObjectModification: 2015_12_26-PM-00_02_20

Theory : co-recursion


Home Index