Nuprl Lemma : bar-converges_functionality
∀[T:Type]. ∀[x,y:bar-base(T)]. ∀[a:T].  (bar-equal(T;x;y) 
⇒ {x↓a 
⇐⇒ x↓a})
Proof
Definitions occuring in Statement : 
bar-equal: bar-equal(T;x;y)
, 
bar-converges: x↓a
, 
bar-base: bar-base(T)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bar-converges_wf, 
bar-equal_wf, 
bar-base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:bar-base(T)].  \mforall{}[a:T].    (bar-equal(T;x;y)  {}\mRightarrow{}  \{x\mdownarrow{}a  \mLeftarrow{}{}\mRightarrow{}  x\mdownarrow{}a\})
Date html generated:
2016_05_14-AM-06_20_34
Last ObjectModification:
2015_12_26-PM-00_00_38
Theory : co-recursion
Home
Index