Nuprl Lemma : bar-converges_functionality

[T:Type]. ∀[x,y:bar-base(T)]. ∀[a:T].  (bar-equal(T;x;y)  {x↓⇐⇒ x↓a})


Proof




Definitions occuring in Statement :  bar-equal: bar-equal(T;x;y) bar-converges: x↓a bar-base: bar-base(T) uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  bar-converges_wf bar-equal_wf bar-base_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:bar-base(T)].  \mforall{}[a:T].    (bar-equal(T;x;y)  {}\mRightarrow{}  \{x\mdownarrow{}a  \mLeftarrow{}{}\mRightarrow{}  x\mdownarrow{}a\})



Date html generated: 2016_05_14-AM-06_20_34
Last ObjectModification: 2015_12_26-PM-00_00_38

Theory : co-recursion


Home Index