Nuprl Lemma : bar-converges_wf

[T:Type]. ∀[x:bar-base(T)]. ∀[a:T].  (x↓a ∈ ℙ)


Proof




Definitions occuring in Statement :  bar-converges: x↓a bar-base: bar-base(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bar-converges: x↓a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf equal_wf unit_wf2 bar-val_wf bar-base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality unionEquality hypothesisEquality inlEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:bar-base(T)].  \mforall{}[a:T].    (x\mdownarrow{}a  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_20_10
Last ObjectModification: 2015_12_26-PM-00_01_33

Theory : co-recursion


Home Index