Nuprl Lemma : bar-converges_wf
∀[T:Type]. ∀[x:bar-base(T)]. ∀[a:T].  (x↓a ∈ ℙ)
Proof
Definitions occuring in Statement : 
bar-converges: x↓a
, 
bar-base: bar-base(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bar-converges: x↓a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
nat_wf, 
equal_wf, 
unit_wf2, 
bar-val_wf, 
bar-base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
unionEquality, 
hypothesisEquality, 
inlEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:bar-base(T)].  \mforall{}[a:T].    (x\mdownarrow{}a  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_20_10
Last ObjectModification:
2015_12_26-PM-00_01_33
Theory : co-recursion
Home
Index