Nuprl Lemma : bar-val_wf

[n:ℕ]. ∀[T:Type]. ∀[x:bar-base(T)].  (bar-val(n;x) ∈ T?)


Proof




Definitions occuring in Statement :  bar-val: bar-val(n;x) bar-base: bar-base(T) nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: bar-val: bar-val(n;x) subtype_rel: A ⊆B all: x:A. B[x] eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) top: Top le: A ≤ B less_than': less_than'(a;b) true: True exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf bar-base_wf bar-base-subtype unit_wf2 it_wf equal_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality applyEquality unionEquality unionElimination inlEquality inrEquality because_Cache independent_pairFormation productElimination addEquality voidEquality intEquality minusEquality equalityElimination dependent_pairFormation promote_hyp instantiate

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[T:Type].  \mforall{}[x:bar-base(T)].    (bar-val(n;x)  \mmember{}  T?)



Date html generated: 2017_04_14-AM-07_45_55
Last ObjectModification: 2017_02_27-PM-03_16_32

Theory : co-recursion


Home Index