Nuprl Lemma : bar-equal_wf

[T:Type]. ∀[x,y:bar-base(T)].  (bar-equal(T;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  bar-equal: bar-equal(T;x;y) bar-base: bar-base(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bar-equal: bar-equal(T;x;y) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf iff_wf bar-converges_wf bar-base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:bar-base(T)].    (bar-equal(T;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_20_28
Last ObjectModification: 2015_12_26-PM-00_00_44

Theory : co-recursion


Home Index