Nuprl Lemma : bar-equal_wf
∀[T:Type]. ∀[x,y:bar-base(T)]. (bar-equal(T;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement :
bar-equal: bar-equal(T;x;y)
,
bar-base: bar-base(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bar-equal: bar-equal(T;x;y)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
all_wf,
iff_wf,
bar-converges_wf,
bar-base_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[x,y:bar-base(T)]. (bar-equal(T;x;y) \mmember{} \mBbbP{})
Date html generated:
2016_05_14-AM-06_20_28
Last ObjectModification:
2015_12_26-PM-00_00_44
Theory : co-recursion
Home
Index